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Abstract. For n-vector classical spin systems with coordination numbers qz and average 
coordination q it is proved that the free energy is given, in the high density limit, by the 
Curie-Weiss expression, provided that the average of the relative deviation 11 - q r /  q1 over 
the system vanishes in the same limit. Some factors concerning the surface influence on 
the free energy are then treated. 

1. Introduction 

The classical Curie-Weiss theory, which provides an insight into the understanding 
of phase transitions in ferromagnetic systems, has been established rigorously using 
various spin models. 

Molecular fields can be obtained in the long range limit of Kac-type potentials 

Pij = # P ( Y I ~  -A) 
(Thompson and Silver 1973, Pearce and Thompson 1975). 

In some particular cases, Curie-Weiss theory has been established by considering 
a short range potential on spin lattices in the high density limit (infinite coordination 
limit). The high density limit for Ising spin models was obtained by Thompson (1974). 
The method proposed is a graph-theoretical one, and it works on any lattice with 
coordination number q. Because generalisation to other than Ising spin models is 
difficult, an algebraic method, known as the coalescing bound method (or YS method) 
developed by Thompson and Silver (1973), was applied by Pearce and Thompson 
(1978) for the exact computation of the free energy for n-vector models on regular 
lattices. In its original form, the method could not avoid diagonalisation of a particular 
cyclic matrix (corresponding to regular lattices of increasing coordination). 

In this paper some technical amendments are made in order to generalise the result 
obtained by Pearce and Thompson (1978) to any n-vector classical spin system in the 
q + 00 limit, provided that the deviation from the average coordination becomes 
negligible (in a sense specified below) in this limit. In P 2 it is proved that, for such 
systems, the Curie-Weiss expression for the free energy is valid in the high density 
limit. In § 3 this result is applied to the study of the surface influence on the free 
energy of bounded lattices and of highly anisotropic spin systems on two particular 
models. 
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Consider the Hamiltonian 
N N 

X n  = -(2q)-'J A& * Sj - H *  Si 
i j = l  i = l  

where the symmetric matrix A is given by 

1 for interacting spins A. .  = 

and 

The following constraint is imposed on the matrix A:  

with 
N 

&N,q=(Nq)-' C Iqi-41 
i = l  

i.e. the deviation from the average coordination must be negligible. 
The free energy, I)"@, H ;  q ) ,  is defined as 

V ( P ,  H ;  4 )  = lim I)m, H ;  4 )  
N-m 

with 

P P  

Z",(p, H ;  q )  =A," J . . . J dNS exp(-PXn) 
~ ~ s , ~ ~ = n 1 ' 2  

and 

A,, = 2 ~ " / ~ n ( " - ' ) ' ~ / r (  n/2). 

The main result is the following theorem, proved in § 2. 
(1.9) 

Theorem. For the n-vector spin systems specified by (1.1)-( 1.9), the limiting free energy 
is given by 

$ " ( P , H ) =  lim I ) " ( P , H ;  q ) = m i n [ t n J x 2 - p - ' l o g ~ n ( P J x + P H ) ]  (1.10) 
l7-m X 

with H = n-'/211HJI and 

= ~ ( n / 2 ) 1 , , ~ ~ ~ , ( n x ) / ( ~ n x ) ~ ' ~ ~ ' ~  

I, is the modified Bessel function of order /I. 

2. Proof of the theorem 

In order to obtain the limiting free energy (l.lO), we shall follow the general scheme 
of the TS method. 
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The upper bound of the free energy (1.6) is given by (1.10). This fact is easily 
proved using Jensen's inequality, relation (1.4) and direct computation of the remaining 
integrals. For details see, for example, Thompson and Silver (1973), in which these 
manipulations are done for a similar case. 

The lower bound is more easily obtained if we compute it for an equivalent matrix 
of interaction-i.e. leading to the same limiting free energy-having the maximum 
eigenvalue close to its medium coordination. One way of obtaining such a matrix, A', 
together with the sufficient condition of equivalence which applies to this case, is given 
in appendix 1. The matrix obtained there has, in addition, the following properties 
(see relations (A1.7) and (Al.8)):  

max q j s  q 
I 

and 

lim q ' / q  = 1 
q-* 

The estimation of the eigenvalues of A' is done by the following lemma. 

Lemma. The eigenvalues ai of a matrix of type (1.2) are evaluated by 

where 

q M  = max 1 qi .  

Proof: The min-max principle is used. Noting that the elements A, are non-negative, 
(2.1) follows directly from 

(with E[*,, x f  = 1 ) .  
We see now from (A1.8) and (2.1) that the eigenvalues of A' obey the inequality 

la ; /  s q. (2.2) 

IA'I = S diag {Ia;l}S-' 

Following the general ideas of Pearce and Thompson (1978), set 

(2.3) 

with S chosen such that 

A'= S diag { a : } S - '  (2.4) 

and 

qK,  = lA'lij + qsSU ( E > O ) .  (2.5) 
Since the matrix qK -A'  is positive definite, the following inequality holds for the 
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partition function related to A' 

2; ( p ,  H ;  9') s A i N  I. . .I dNS exp ( t u '  K,Si - Sj + PH - c Si 
I/S, 1 1  = n " 2  

( U' = PJ',  J' = Jq( q')-  l ) .  (2.6) 

Using a standard identity (see Pearce and Thompson 1975), we can rewrite (2.6) 
in the following form: 

Z$(p,  H ;  q ' ) S  (2~)-"/~A;"(det K / v ' ) - " / ~  I.. .[ dNx 

m 

-22 

xexp(-+ v ' c K ; l x i - x j  ) I.. .I d N S  exp (T vrxi + PH) - Si (2.7) 
i. i 

/ IS , I /=n '"  

m 

= (2~)-""'*(det K /  U')-"/* I. . .[ dNx exp ( - t u '  (K; '  - Z - ' ~ ~ ~ ) X ,  - xJ 
1.J 

-cc 

x n exp[-4v'z-'llxI 1I2+log 6tn(n-'/211 v'x, + pHII)I (2.8) 

where the function 8, is given by ( l . l l ) ,  z = a( l  + E ) ,  a > 1, keeps the matrix { K ; ' -  
z - '6 , }  positive definite. 

Maximisation of each term of the product in (2.8) and computation of the remaining 
Gaussian integrals leads to 

I,G((P, H ;  q )  2 min [4nz-'J'x2 - p-' log B n ( p J ' x  + pH)] 
X 

+(2N)- 'np log[det(l- K /z ) ]  (x = n-'/* Ilxll). (2.9) 
Taking the limits E +0, N + m ,  q+m (after which J = J ' ,  see (A1.7)) and a + 1, the 

(2.10) 

proof is completed, since the epor  term 

 EN,^(^, E )  = (2N)-'nP log[det(j - K/z) ]  

as shown in appendix 2, vanishes in the same limits. 

As a particular case, the result of the theorem applies, of course, to any 'homogeneous' 
system (s i  = q for all i ) ,  with short range interactions of type (1.2), independent of the 
type of lattice, its regularity or space dimension. 

A system for which condition (1.4) is not trivially fulfilled will appear in the next 
section. 

3. Bounded systems 

We shall first apply the theorem of 0 1 to evaluate the surface influence on the free 
energy for d + models. Consider first the model of a ddimensional bounded cubic 
lattice with m > 2 vertices in each direction ( m  is a constant of the problem) and a 
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nearest-neighbour interaction of type (1.2). In view of its boundedness and absence 
of cyclicity conditions, this system may seem to present strong surface effects but, as 
will be shown, this is not the case. 

As can be seen from the development of p d  in powers of ( p  - 2 ) ,  the number of 
k-dimensional faces is 

C:2d-k. (3 .1)  

Now, simple algebra shows that 

q = 2d( 1 - m - ’ )  

and also 

(3.2) 

(3.3)  

so that the theorem applies to our system and the free energy is the same as if cyclicity 
conditions were imposed to suppress the surface. This is due to the fact that, in the 
infinite dimensionality limit, the number of spins situated on faces with some particular 
dimensions (in our case, close to d(1-2m-I)) becomes dominant, and the geometry 
of even bounded systems becomes insignificant. Clearly, surface effects can be revealed 
only if a sufficiently strong anisotropy is imposed on the system. We shall choose a 
system which is, in some aspects, the d + a3 analogue of the model considered by 
Pearce (1977). Consider the Hamiltonian 

(3.4) 

where A ,  is a matrix of type (1.2)-(1.5) and T is considered constant througout the 
problem. The n-vector partition function is given by 

with A,  given by (1.9); the other functions are defined as in P 1 .  

of the free energy follows essentially the same path, so we shall only sketch it here. 
Although for this system the theorem cannot be directly applied, the computation 

In the N + CO, q+m limit, the free energy is given by 

+;(p, H )  = T-‘ min 

with 

X: - p-‘  log UnT( V, B + V X ~ ,  . . . , B + VXT) (3.6) 
X1 

+ / 3 C ( H + J x l ) * S 1  dTS ( B  = pH, v = P J ) .  (3 .7)  
I ) 

The existence of the absolute minimum in (3.6) is obvious from (3 .7) .  The upper 
bound can again be found in the standard way. For the lower bound, the matrix { A , }  
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is again replaced by its equivalent {Ai,}. The same construction (2.2)-(2.4) is then 
applied to the matrix A‘. This gives 

- X  

x n exp(-fv‘z-’ 2 x?f+log UnT(v,  B +  v‘xil,. . . , B +  Y.xiT)). (3.8) 
I r 

After the maximisation of each term of the product appearing in (3.8), the same steps 
as used in the preceding section can be applied to (3.8) to obtain the final lower bound. 
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Appendix 1 

Let B and B’ be two matrices for the Hamiltonian ( l . l ) ,  q and q’ their medium 
coordinations, defined through (1.3), and t,bk, 4”” given by (1.7). 

The proof is immediate, using the inequalities 

(Al . l )  

(A1.2) 

(A1.3) 
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and 

(A1.4) 

for a direct computation of ( I,!Ik - 4:) and by passing to the limits. 

lim +& = lim +:= +, as used for simplicity in the proof of the theorem. 

follows. 

of [sj, - q ]  + 1 indices 'interacting' with the index jl. Then set 

Note that, if condition ( A l . l )  is satisfied and lim (cl; =G +S = +, it follows that 

A matrix A' with the properties stated in the text can be obtained, for example, as 

Starting with matrix A, choose jl such that 4,, 3 4i for all i and a set J1, consisting 

for k=j, and 1 in J ,  
otherwise. 

AE) = A):) = (A1.5) 

With A") standing for A, X J A t )  for q,, but keeping q the same as before, define in 
the same manner a matrix A(*). Continue this algorithm until, for some m, [ q!" - q ]  + 
1 s 0, i = 1,. . . , N. Denote by A' the matrix A'"'. 

Condition ( A l . l )  is then fulfilled for the matrices A and A'. Indeed 
N N c lA,-Abl= c (A,-Ab)==2 c ( 4 , - 4 ) + 2 N  

1.J = 1 l . J = l  ( ' /4r"41 

(A1.6) 

As a consequence of (A1.6) and (A1.4) 

lim q ' / q  = 1 (A1.7) 
4-m 

and also 

q s m a x q : .  (A1.8) 

As shown by one of the referees through a bond-moving algorithm, one can prove 
that any matrix of form ( 1 . 2 ) - (  1.5)  is equivalent to a 14t - 41 s 1 matrix and this could 
be an alternative approach to the problem. 

I 

Appendix 2 

Our aim here is to prove that 

lim EN,q(  a, 0) = 0 

with EN, , (a ,  E )  given by (2.10). 

N,q-rW 

The eigenvalues of the matrix I - z - I K  are 

A i  = 1 - a- 'q - ' / a j l=  1 - z - 'x i  

and thus 

E N , q (  a, 0) = 4 np log( 1 - z - 'x i )  
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where $ stands for N-'  X i  yi. As 0 s xi s 1 ,  we have 
- 
xi log( 1 - z-l) log( 1 - z-'xi) s 0. 

From the definition (A2.2) of xi, 
- 
xf = N-'q-2a-2 Tr(At2). ( '42.5)  

By construction, matrix A' has the special form (1.2). As a consequence of this and 
of (A1.8), the right-hand term of (A2.5) is given by 

(A2.6) 

so that lim,,,,xf = 0 = limN,q+coq, which, together with (A2.4) and (A2.3), implies 
the result (A2.1). 

a - 2  q -2 q I sK2(q')- '  
- 
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